
/ .' _ , s #

/

//,l. _/'

I

/

APPENDIX E: Comparison of fault detection algorithms for real-time
diagnosis in large-scale systems

Presented at the SPIE Aerosense Conference, Orlando, FL, April 16-20, 2001.

84

Fault Detection Algorithms for Real-Time Diagnosis in

Large-Scale Systems

ThiagalingamKirubarajan a, Venkat Malepati b, Somnath Deb b and Jie Ying a

a Dept. of Electrical and Computer Engineering, Univ. of Connecticut, Storrs, CT 06269-2157

b Qualtech Systems, Inc., 100 Great Meadow Road, Suite 501, Wethersfield, CT 06109

ABSTRACT

In this paper, we present a review of different real-time capable algorithms to detect and isolate component failures in large-
scale systems in the presence of inaccurate test results. A sequence of imperfect test results (as a row vector of l's and O's) are
available to the algorithms. In this case, the problem is to recover the uncorrupted test result vector and match it to one of the
rows in the test dictionary, which in turn will isolate the faults. In order to recover the uncorrupted test result vector, one
needs the accuracy of each test. That is, its detection and false alarm probabilities are required. In this problem, their true

values are not known and, therefore, have to be estimated online. Other major aspects in this problem are the large-scale
nature and the real-time capability requirement. Test dictionaries of sizes up to 1000 x 1000 are to be handled. That is, results
from 1000 tests measuring the state of 1000 components are available. However, at any time, only 10-20% of the test results
are available. Then, the objective becomes the real-time fault diagnosis using incomplete and inaccurate test results with
online estimation of test accuracies. It should also be noted that the test accuracies can vary with time --- one needs a
mechanism to update them after processing each test result vector. Using Qualtech's TEAMS-RT (system simulation and
real-time diagnosis tool), we test the performances of 1) TEAMS-RT's built-in diagnosis algorithm, 2) Hamming distance
based diagnosis, 3) Maximum Likelihood based diagnosis, and 4) HiddenMarkov Model based diagnosis.

Keywords: fault diagnosis, fault isolation, real-time diagnosis, large-scale systems, performance analysis

1. INTRODUCTION

The problem of fault diagnosis and isolation in large-scale systems requires computationally efficient algorithms that can
process large amounts of data in order to achieve real-time capability. In addition, the algorithms should not sacrifice fault
isolation accuracy for computational efficiency. Recent advances in sensor technology, communications and computational
capabilities have made online system health management an essential component of complex system operations. By means
of smart sensors onboard a system, low-level test decisions are made based on processing of sensed waveforms. A real-time
monitoring and inferencing algorithm fuses these low-level decisions into an overall assessment of thesystem state.
However, low-level decisions are prone to error due to improper threshold selection, lack of adequate physical models,
electromagnetic interference, environmental conditions, etc. Imperfect tests introduce an additional element of uncertainty
into the diagnostic process: the 'PASS" outcome of a test does not guarantee the integrity of components under test because

the test may have missed a fault; on the other hand, a "FAIL" outcome of a test does not mean that one or more of the
implicated components are faulty because the test outcome may have been a false alarm. Consequently, the diagnostic
procedures must hedge against this uncertainty in test outcomes. In addition, at any sampling time, the results of all test
decisions in a system are not available due to varying sampling rates of sensors and signal processing limitations. Thus, the
problem is one of determining the states (good/faulty) of components given a set of partial and unreliable tests over time,
which is the subject of this paper.

A number of algorithms have been proposed for this large-scale fault isolation problem. One particularly efficient algorithm

is TEAMS-RT, which is part of Qualtech_ Intergerated Diagnostics Toolset [1]. Using fast enumeration techniques,
TEAMS-RT classifies the systems components into Good, Bad, Suspect and Unknown states. As discussed below, TEAMS-
RT can handle systems with thousands of components and test points in real-time. One missing feature in TEAMS-RT is the
ability to handle test inaccuracies, that is, misseddetections and false alarms in test outcomes. A missed detection occurs
when a test gives out a PASS reading when the actual outcome should have been a FAIL due to a component failure.
Similarly, a false alarm occurs when a test outcome isa FAIL when no underlying component has failed. Taking the

probabilities of missed detections and false alarm in the diagnosis step can usually improve performance. That is, the
reliabilities of the sensors can be used in the diagnosis process itself.

Inorder to rectify this, options were added to TEAMS-RT to handle unreliable tests [2]. This involves estimating the missed
detection and false alarm probabilities of the sensors in real-time and using them in a Maximum Likelihood (ML) fashion for
fault isolation [3]. If the reliabilities are not available, a Hamming distance type approach can be used to find a single or

multiple faults [4]. This involves comparing the observed test outcome with the test dictionary and selecting the likeliest fault
(or faults) that could have produced the observed sensor outputs.

Another approach for handling unreliable tests for single fault analysis is to use a HiddenMarkov Model (HMM) [5]. A
HMM is capable of characterizing a doubly embedded stochastic process with an underlying stochastic process that, although
unobservable (hidden), can be observed through another set of stochastic processes. In the fault diagnosis problem, the faulty
states of the system are not observable directly, i.e., they correspond to the hidden part of the doubly embedded stochastic
process. The hidden states of the system can be observed through another set of stochastic processes that produce the

sequence of uncertain test outcomes. The key problem in diagnosis is to choose the most likely (hidden) state sequence,
given the sequence of uncertain test outcomes. A HMM is a parametric model characterized by the state transition

probabilities, the instantaneous probabilities of test outcomes given the system state and the initial state distribution. These
parameters can be adaptively estimated by the well-knownBaum-Welch algorithm [6]. Therefore, an algorithm capable of
considering these two problems of finding the most likely state sequence and of estimating model parameters within the same
theoretical framework is required. HMM provide the required theoretical machinery. One major disadvantage of the HMM

approach is its computational complexity that is not real-time feasible.

This paper reviews these different methods, which differ in computational complexity and fault isolation capability, and tests
their performances on some representative large-scale systems. Test dictionaries of sizes up to 1000 x 1000 are to be handled.
That is, results from I000 tests measuring the state of 1000 components are available. However, at any time, only 10-20% of
the test results are available. Then, the objective becomes the real-time fault diagnosis using incomplete and inaccurate test
results with online estimation of test accuracies. It should also be noted that the test accuracies can vary with time --- one

needs a mechanism to update them after processing each test result vector. The experiments are carried out usingQualtech's
TEAMS-RT system simulation and real-time diagnosis tool.

This paper is organized as follows: Section 2 reviews basic TEAMS-RT inference engine. In Section 3, Hamming distance
and Maximum Likelihood based diagnosis methods are presented. Section 4 summarizes the use of the HiddenMarkov

model approach for single fault isolation. Each of these sections presents representative simulation results.

2. REAL-TIME DIAGNOSIS USING TEAMS-RT

Introducing TEAMS-RT

QSI_ integrated tool set automates the tasks of Design for Testability (DFT), Reliability Analysis, FMECA, on-line
monitoring and off-line diagnosis [1]. The software tool set consistsof :

• TEAMS: Testability assessment and improvement (DFT), reliability analysis, Failure Modes, Effects and Criticality

Analyisis (FMECA) and pre-computed diagnostic test strategy generation in a variety of forms (e.g., SGML-based
Interactive Electronic Technical Manual);

• TEAMS-RT: on-board diagnostics, health and usage monitoring systems (see Figure 1);

• TEAMATE: Portable Intelligent Maintenance Aids pIMAs) with interactive electronic technical manuals and multi-

media animation, dynamicTPSs for ATEs.

• TEAMS-KB: Scheduled and unscheduled maintenance and diagnostics data collection, statistical data analysis and data

mining for trend and anomaly detection/isolation.

The TEAMS toolset implements a model-based reasoning approach, wherein information about failure sources, tests and
monitoring points, redundancy and system modes are captured in colored directed graph models known asmultisignal
models [7]. In simple terms, these models enable the inference engine to interpret test results by answering these

R\

re \ forFault
st;

aamling ,I/

I--' ana
,¢

I _ S" r

Figure l: Real-time process monitoring using TEAMS-RT.

questions: given a test TI, which components can cause it to fail; or, if I want to check the health of component CI, which
tests can observe it. Such models may be automatically generated via fault simulation (using simulators such as Saber,

PSpice, VHDL simulators, MATRIXx) or entered manually in TEAMS based on engineering understanding of the system or
legacy data captured in FMECA reports, fault trees, CAD data, and technical documentation. The same model is then used by
TEAMS-RT for onboard monitoring, and by TEAMATE for ground support systems_ thus ensuring that the results predicted
in the design stage by TEAMS are indeed achieved in actual application.

TEAMS-RT monitors the health of the target system by interpreting test results in real time. Such on-line tests are typically
built-in self-tests and alarms, which often involve acquisition of data from sensors, filtering, estimation and decision-making.
Thus, the actual deployment of TEAMS-RT also involves modules for data acquisition, filtering, and extraction o_'eatures

(such as computing the mean, r.m.s, power or harmonic distortion of a observed response), and comparing the observed
feature to (a range of) reference values to decide whether a test has passed or failed (see Fig. 1). In the rest of this section, we
focus on the TEAMS-RT reasoning engine, whereas the signal and data processing module is presented in the following
section.

The Basic TEAMS-RT Algorithm

The objective of the TEAMS-RT inference engine is to associate one of four distinct (failure) states with each component in
the system: (1) Good, (2) Bad, (3) Suspected, and (4) Unknown. When TEAMS-RT is invoked, we assume that the state of all
components is Unknown. If a test covering a component passes, its state is updated to Good. If a test covering a component
fails, its state is Suspected. The Bad components are derived from these Suspected components by elimination of Good
components. For notational simplicity, we define test signature Ts) as a set of failure sources detectable by test tj. The
necessary information for fault diagnosis is stored in the following sets:

A is the set of All components,

B is the set of known Bad components,

S is the set of Suspected components,

Uis the set of Unknown components,

G is the set of known Good components,

F ={ _ } is the signature of failed tests after removing theGood components from Tsj.

The basic algorithm for the inference engine of TEAMS-R/is as follows:

Algorithm: TEAMS-RT Inference Engine

Step l: Initialize:
Set state of all Faults to Unknown

U=A, B=O, S=O, G=O, F=O.

Step 2: Process Passed Tests:
i. Find the union of test signatures of passed tests,

k-)tj passed TSj.

ii. Find new good components using the union of test signatures of passed tests:

AG _-- (utj passedTSj)- G
iii. Update Fault sets - remove good components from Suspect and Unknown sets

G_---G uAG, S +--S-AG, U_-- U-AG.

Step 3: Process Failed Tests:
i. Store failure sub-signatures pendingresolution

F= {J_ } <----{ Tsk-G}
ii. Add Unknown covered components to the set of Suspected components:

s+--su{A},u
Step 4: Process unresolved failure sub-signatures:
i. Update the "unexplained" failed test set F by removing the new Good components.

F:{_ }+-- {__-AG}
ii. Update Bad component list B by identifyingone-for-sure Bad components

If I£1=1, B -gu£,a aBu£.
iii. Remove sub-signatures explained by newly identified_ad components

lfj_ _ AB, _, removej_ from F, since it

is now explained by AB.

Capabilities and Performance of TEAMS-RT

The inference engine algorithm outlined above is at the core of TEAMSRTg efficiency. The production version of TEAMS-
RT includes additional capabilities for dynamic system modazhanges, and capability of diagnosis and prognosis in fault-
tolerant systems with built-in redundancy. Some unique features of TEAMS-RT are: 0 efficient real-time processing of
sensor results, (ii) update of fault - test-point dependencies in response to system mode changes, and (iii) update of
dependencies resulting from failures in redundant components. Table 1 presents simulation results for TEAMS-RT on a

1000xl000 system with 80 modes of operation. Column 1 lists the number of faults inserted.]l'pl is the number of tests that
passed in spite of the failures. The remaining columns list the number of components that were declared to be good, bad and
suspected (residual ambiguity) by TEAMS-RT, and the processing time. Similar timings were observed in the X33-IPTD

test-stand [8].

Table 1: Performance results of TEAMS-RT for simulated system with 1000 faults and tests.

faults ITpl Good Bad

1 993 997 1
2 978 996 2

5 931 991 5

10 881 983 10
20 819 973 20

Suspect Time(ms

2 50
2 50

4 50
7 75

7 87

3. HAMMING AND MAXIMUM LIKELIHOOD DECODING FOR FAULT ISOLATION

Introduction to ML Decoding

The objective here is to develop a real-time capable processor to detect and isolate component failures in large-scale systems
in the presence of inaccurate test results. A sequence of imperfect test results (as a row vector of 1_ and 0_) are available to

the processor. In this case, the problem is to recover the uncorrupted test result vector and match it to one of the rows in the
test dictionary, which in turn will isolate the faults.

In order to recover the uncorrupted test result vector, one needs the accuracy of each test. That is, its detection and false alarm
probabilities are required. In this problem, their true values are not known and, therefore, have to be estimated online. Other
major aspects in this problem are the large-scale nature and the real-time capability requirement. Test dictionaries of sizes up
to 1000 x 1000 are considered. That is, results from 1000 tests measuring the state of 1000 components are available.

However, at any time, only 10-20% of the test results are available. Then, the objective of the current work becomes the real-
time fault diagnosis using incomplete and inaccurate test results with online estimation of testaccuracies. It should also be
noted that the test accuracies can vary with time --- one needs a mechanism to update them after processing each test result
vector.

In general, let there be m components and n different tests. Assume that, at any time tk when the k-th frame (incomplete test
result vector) of test results are obtained results from only n' tests are available. Using this frame of test results, one needs to
diagnose the component failures, if any, as well as update test accuracy information. Figure 2, where t_j2, j,' are the indices
of the tests available at timetk, schematically shows the input/output relationship.

{7)(t_);j = j_, .i'-,,'" ,.i,_,}

{t%(_ :): j = ,,/i,j:_-'"" ,£' }

{t'_. u(_'_-_):.j = j,., .i2_'"..J,,, }

D(tk)

{l'oj (t_.t:.i = .i,, ,J_."""_.)._}

{P_...u(t,,):.i : .J_.)...,,'- ,.i,,,}

Figure 2: Input to and output from the processor for real-time fault diagnosis.

The diagnostic output D(& from the processor depends on how the problem is formulated and the processor implemented.
For example, D(t_) may yield the uncorrupted test result vector which can be used to decide component failures.

Alternatively, when the uncorrupted test result vector cannot be identified, one may obtain a set of probable uncorrupted test
vectors with corresponding confidences in them. For the configuration shown in Figure 2, the latest incomplete test vector
obtained at time tk is used as the input. One can also use the set of last I test vectors as the input, in which case, the processor
operates in batch mode. These various options for input and output are discussed in detail in the sequel.

Other issues that need attention are how to initialize the test accuracies and how to update them in view of the latest test
result vector and the corresponding diagnosis. The test accuracies for testj are measured in terms of the detection probability

PDj and false alarm probabilityPrAj. These probabilities are defined as

PDj = Pr{Tj : FAILI Rj : FAIL}

PFAj = Pr{Tj = FAIL] Ry = PASS}

where Rj is the actual test result one would obtain for testj in the absence of any test errors.

Finally,oneneedsto address the distinction between test errors and component failures. In the presence of test errors,
especially when results from all the tests are not available, one has to identify whether the received test vector is due to a
component failure or due to a test error. Due to test errors, the received test vector can correspond to a valid component
failure signature although there arent any such failures actually. Unnecessary and costly component repairs and replacements
are required in the absence of such a distinction. Intermittent component failures also necessitate the need for distinction.
Ideally, one would like to be able to identify intermittent failures and not decide them as permanent component failures.

With the above, the primary objectives of this work are as follows:

I. Distinction between test errors and component failures.
2. Detection and, if possible, correction of test errors.
3. Component fault isolation based on ! and 2.
4. Online estimation oftestaccuracies.

Maximum Likelihood Decoding

Denote the test vector received at time tk by z(tk), which is given by

z(t k) = { Tj (t k); j = Jl,J2,..., J,' }

For fault-diagnosis, one needs to find the uncorrupted test result vector

r(t_) = {R/(t k); j = Jl.J2,..., J,, }

When r(tk) cannot be recovered with certainty, a set of probable r(6) values need be obtained In order to understand the
solution methodology, consider the process of receiving z(& and how it relates to the test matrix. The binary test matrix D
consisting ofm unique rows relates the component failures to actual test outcomes The i-th row di of D gives the tests that
will fail ifcomponenti fails ---dq = 1= FAlL indicates that testj will fail ifcomponenti fails. Then r(tk) is the subset of the
actual results for the tests that are available at time tk. Due to the non-unity detection probabilities and non-zero false alarm
probabilities, the outcomes in r(& may be corrupted and received differently asz(tJ. The transition from Ry(tJ to Tj(td is
illustrated in Figure 3. Thus the problem is to recoverr(tk), and, effectivel3_ di(tk) from z(t_).

A simple solution is to select the row di in D that has the minimum Hamming distance to the received vector. While this
approach can work satisfactorily when there is enough redundancy in the test matrix and most of the test results are available
at all times, this will lead to ambiguous decoding with incomplete test results. The problem here is that there will be a number
of rows in the test matrix D that have the same Hamming distance (differs by the same number of bits) from the received
vector and, therefore, only error detection, not error correction, is possible. The optimal solution is to use a Maximum-
Likelihood (ML) estimator, which yields the row in the test matrix that best matches the received imperfect test results, given
the test accuracies [3].

&{t_ } T i{&,)

' PASSPASS /,
X.. ///

.j//" "--..
I - 1%/.--" "_-d-'tvtj

FAIL
PL_

EML

Figure 3: Test errors and their probabilities.

Since true test accuracies are not available, the estimated ones have to be used. Then

^ .,_ ^

d(t_) = arg max< {p[z(tk)ld,,{Po,(tk_l),Pm(tk_,);j= 1,...,n}] }

Assuming that the errors in test jl are independent from those of test j2 forj_*j2, one can rewrite
the above as

d(q) = argmax< { FI p[T,(q)[do.,['q(t,_,),P_;(t,_,)]}

j= J1,'"'Jn'

which is equivalent to

d(t,) = argmax< { Z

J-Jl,...,Jn,

}

The individuallikelihoods can be derived from Figure 3 as

p[T/(t,) = PASS Id,j = PASS,/_oj(t,_,),/_FAj(q_,)]= 1- I'm

p[T (t,)= PASS]d o.= FAIL,/_Dj(t,_,),/_m(t__,)]= 1-/}oj

p[T(t,)= FAIL]d o =PASS, fgoj(tk_,),[}FAj(tk_,)]= /}m

p[Tj(t_) = FAIL]d o =FAIL, f:}_(tk_t),f_rAj(t__,)]= ['_

With these values, the maximum likelihood estimator has to enumerate all the possiblmutcomes (all single fault conditions

and the no-fault condition), evaluate their likelihoods and select the best row. Then, the problem becomes that of selecting the
best row from a codebook of size (re+l) by n.

The advantage of above approach is that it yields the optimum performance by making use of the relative reliabilities of the
different tests as well as the difference between the miss probabilityl-Po and the false alarm probabilityPFA. In contrast, the

Hamming distance-based decoder assumes that all tests are equally reliable and the two error probabilities for a given test are
the same. In fact, it can be shown that when the tests are equally reliable and the two error types are equally probable, the

Hammingdecoderisoptimal. In real systems, not all the tests in the system are equally accurate. In addition, depending on
the nature of the test, one error type (for example, false alarm) may be more likely than the other In this case, the use of test

accuracy information will yield superior fault detection and isolation.

The major disadvantage of using accuracy information is the added computation load due the need for floating point
operations whereas the Hamming decoder requires only integer operations. It also requires the online estimation of test
accuracies, which increases the computational load. However, in real systems test accuracies can vary with time (for
example, due to wear and tear) and online estimation is essential for accurate decoding.

Online Test Accuracy Estimation

The unknown detection and false alarm probabilities of the tests have to be updated after processing each received test vector.
Naturally, how the probabilities are updated depends on the past history as well as the latest test vector. The update
mechanism should be such that it is not too sensitive to spurious test errors while giving more importance to the recent test
results in view of the time-varying nature of test accuracies. Thus, the updated probabilities are evaluated as the weighted
average of the past and the present probabilities. Since one has to take the time-varying nature into account, the update is
carded out using a sliding-window approach.

In the following the test indexj and the estimate notation "" have been omitted for simplicity. LetPD(to) and PrA(t0) be the
estimates for the detection and false alarm probabilities, respectively, at some known timeat in the past. Also, let Pr_t0. tk)
and PFA,(to. tk) be the corresponding probability estimates in the time interval (,. tk). Then the weighted probability update
can be written as

Po(tk) =(1-ao(to,tk))Po(to) +az,(to,t_)P_w(to,t,)

PFA(t,) = (1 -- aFA (to,t ,)) PFA(to) + aFA(to'tk)PFAw(to'tk)

where the weighting parameters o_o(t0,tk) and ctvA(t0,tk) depend on how much importance one wants to place on the latest
probability estimates. Typically, that would depend on how much data is available to update the probabilities within the
interval (to. t_). Note that the initial time toneed not really correspond to the estimation starting time. In order to handle time-
varying error probabilities, one can move the initial time 6 with a sliding window and advance it. This amounts to
reinitializing the probability estimates and then updating them at regular intervals, saytw, where tw is the maximum width of
the sliding window. The sliding window approach is illustrated in Figure 4.

[' t+,(t,,) lS,++.!to. tt.)

PF _(to) Pr._¢,.(_,_.t,.) !

I_ te

Figure 4: Updating test accuracies.

In the above, one has the option of choosing the weighting parameters eq)(to, lk) and O_F_(t0, tk) in a number of ways.
Intuitively, the more data one has in the interval (k tk) to update the detection and false alarm probabilities, the higher the
values of the corresponding weighting parameters. For example, the weighting parameters can be proportional to the

available data as shown in Figure 5.

,_ttu

_ I Dm_rt

tA.)

j t/

i f

<

Ntltiih+'|' t)f ._allil.ile,'i available ill
w (1o, tk) Io Utillai.e l:>tj,<(to, tk)

Figure 5: Linear weighting parameter for updating PD.

The weighting parameters for updating the detection probability and the false alarm probability may be different in view of
the different number of samples that can be used to update them. The online estimation approach requires the initial estimates
for Po and PFA. These can be obtained using a Hamming distance-based decoder. For example, the first/test result vectors
can be used for initializing the estimates. In this case, one assumes that the probabilities are unknowmonstants [3].

As noted earlier, one advantage of using test accuracy information is that it provides better resolution in recovering the
uncorrupted test vector. With Hamming distance, one may not be able to resolve the test vector for there may be a number of
rows in the test matrix with the same distance to the received vector. With the online estimation of testaccuracies, this is still

possible, albeit less frequently. When there are multiple rows with the same maximunlikelihoods, one needs a mechanism to
decide which of those rows resulted in the received vector. Another important issue is the distinction between test errors and
component failures. This becomes an issue when there are multiple rows, including the one corresponding to no-failure
condition, with the same maximum likelihood.

If a componentg failure statistics, for example, the mean time between failures, their averagedurations, etc., are known, the
distinction is formulated as a hypothesis testing problem where the comparison is test error vs. failure in one of the
components. For the current work, the fault statistics are not known. Therefore, in this case, only the past outcomes from the
decoding/updating step can be used to make the distinction.

Performance of the Decoders

The program has been tested with a dictionary of size 1024 x 1000. The testbed to simulate systems of different complexity
and parameters has been developed. Preliminary results indicate perfect (100% correct at !-10%sparsity when all test results
are available) decoding at lOOms per test result vector (including data generation, decoding and saving results) on a Pentium
Pro processor running at 300MHz. The major advantage of using test accuracy information is the reduction in the ambiguity

set size (the set of components that are flagged as suspects -- ideally the ambiguity set size should be one). That is, the
number of rows in the dictionary with the maximum likelihood estimator are fewer and, therefore, one can pin point the
faulty component more accurately. The size of the ambiguityset increases when results from fewer tests are available or
when the sparsity of the test matrix is lower (low system redundancy), in Table 2, the ambiguity set sizes of the Hamming-
distance based decoder and the maximum likelihood estimator are shown against the percentageof test results available at

any time. The sparsity of the test matrix is 1%.

Table 2: Performance of the Hamming and ML decoders.

Test

Availability
100%

Hamming Decoder

Ambiguity Size
1.01

CPU Time
lOOms

ML Estimator

Ambiguity Size CPU Time
! .0 100ms

80-90% 1.30 90ms 1.2 90ms

50-60% 4.95 75ms 2.6 85ms
30-40% 17.30 65ms 6.5 85ms

20-30% 31.5 65ms 17.7 85ms

In Table 2, the CPU times include the time for data generation and, saving the data and results to the disk. Results for the
distinction between component failures and test errors are forthcoming. These proof-of-concept results are only preliminary.
More improvements are possible by distinguishing between intermittent and total failures whenever a component failure is
declared. More rigorous and complete testing using the testbed with different sparsities and test availability percentages is
required.

5. HMM BASED DIAGNOSIS

Introduction to HMM

The use of hidden Markov models to solve the fault diagnosis problem requires the solution of two specificsubproblems:

1. The decoding subproblem of finding the most likely sequence of system states; and
2. Modelparameter estimation subproblem of updating the model parameters to the most likely values according to the

observed test sequence.

Figure 6 illustrates the workflow in HMM-based fault diagnosis framework. State transition probabilities and initial state

probabilities are evaluated (estimated) either via component failure/repair rates or viaBaum-Welch method. Detection and
false alarm probabilities are estimated from the test pass-fail history based on the Central Limit Theorem. Instantaneous
probabilities of test outcomes given the system state are functions of the fault dictionary matrix, and the detection and false
alarm probabilities of tests. Thus, these probabilities can be estimated, based on estimating the detection and false alarm
probabilities of tests. Once the HMM parameters are available, a sliding windowViterbi algorithm is employed to find the
optimal system state sequence based on the observed test sequence.

I

I a"orora'e o'I : I
I componentsII I

II a,e r ns,t,onl
IProbabi,tiesllProbabi,tiesI

Viterbi Algorithm

Oetect'°n'Fa'seA' rmIIFau'tIProbabilities of Tests Dictionary

Test Feature Probabilities [Test SequenceGiven a State (Likelihoods] _ TI, T2..... _,

I
Optimal State

Sequencel_ (EM Algorithm) &
Xl ,X2 _-,

Central Limit Theorem

Figure 6: Overview of online fault diagnosis using HMM.

Performance of HMM Based Diagnosis

In this example, we consider a system with m = 340 failure sources and n -- 256 tests. We assume that at each sampling
time, about 10% of the total tests are available. The test detection probability is assumed to be in the range 0.9 1.0),

while the false alarm probability is assumed to be in the range q.0, 0. I). The component mean time to failure, measured
in hours, is assumed to be in the range [125, 1000]. The component mean time to repair, measured in hours, is in the
range [0.5, 1].

Figure 7 compares the error rates as a function of detection and false alarm probabilities. As expected, the error rates
increase as the reliabilities of tests decrease. The dark bars represent the results of HMM with known system
parameters. Since they have maximum information, these models provide low error rates. The light bars represent
models with adapted parameters based on observations. The error rates are about 1% ~ 2% higher than those with known

HMM parameters.

3O

25

pd~U(0.9,1)
pf-U(0.0.1)

HMM with known parameters]

Adaptive HMM I

pal-U(0.8,1)
pf~U(0.0.2)

pal~U(0.7,1)
pf-U(0,0.3)

05 1 1.5 2 2.5 3 3.5

Figure l : Error rate vs. detection - false alarm probabilities.

6. SUMMARY

In this paper, we reviewed a number of algorithms that can be used for fault diagnosis and isolation idargee-scale
systems (e.g., systems with 1000 components and 1000 sensors). This was motivated by the need for real-time capable
algorithms that can process large amounts of sensor data. A more comprehensive comparison based on a standard set of
systems models is recommended for further analysis. This can be done using the TEAMS-R'Restbed from Qualtech,
which includes the algorithms presented in this paper.

REFERENCES

1. S. Deb et al, "QSlg Integrated Diagnostics Toolset," Proc. IEEE A UTOTESTCON, Anaheim, CA, 1997.
2. T. Kirubarajan, "Real-time Fault Diagnosis Using Imperfect Test Results: Integration of Hamming and Maximum

Likelihood Decoding into TEAMS-RT'; Report to Qualtech, June 1999.
3. Y. Bar-Shalom, X. R. Li and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Algorithms

and Software for Information Extraction, New York, NY: John Wiley & Sons, 2001.
4. B. Sklar, Digital, Communications: Fundamentals and Applications, Englewood Cliffs, N J: Prentice Hall, 1988.
5. J. Ying; T. Kirubarajan, K. R. Pattipati and A. Patterson-Hine, "A Hidden Markov Model-Based Algorithm for

Fault Diagnosis with Partial and Imperfect Tests", IEEE Transactions on Systems, Man and Cybernetics, Part C,
Vol. 30, pp. 463-473, Nov. 2000.

6. L.E. Baum, "An Inequality and Associated Maximization Technique inStattistical Estimation for Probabilistic Functions of a

Markov Processes'; Inequalities, 3, I-8.

7. S. Deb et al, "Multi-Signal Flow Graphs: A novel Approach for System Testability Analysis and Fault Diagnosis,"

Proc. IEEEAUTOTESTCON, Anaheim, CA, pp. 361-373, Sept. 1994.

8. M. Holthaus "Model Documentation for CLIN 0001, Engineering Support Under Qualtech_ NASA Contract

Entitled "Multisignal Flow Graphs for System Fault Diagnosis," Rockwell Aerospace, Final Report, May 1996.

_ _i I Qua!tech Syst_ems, !nc, ...
I(K_ Great Meadow Rd.. Wetherslield CT 06109 Tel./Fax: (860) 52%8014/8312

E-mail: info(h)teamqsi.com

May 17, 2001

NASA Center for Aerospace Information (CASI)

Attn.: Accessioning Dept.

7121 Standard Drive

Hanover, MD 21076

Subject: Contract No.: NAS2-99048

SBIR 1999: Final Technical Progress Report

Dear Sir/Madam:

Please find enclosed two copies of the Final Technical Progress Report

on the following contract:

Contract No.: NAS2-99048:

"An Onboard Real-Time Aircraft Diagnosis and Prognosis System".

If you need any additional information, please contact me at (860) 257-8014.

Sincerely yours,

Chief Scientist

Qualtech Systems, Inc.

